Category: Matemática


Porcentagem

porcentagem serve para representar de uma maneira prática o “quanto” de um “todo” se está referenciando.

 

Por exemplo, se temos 100 caixas, sendo que 40 delas estão cheias de areia, dizemos que 40% (“40 partes de 100”, ou seja, 40 partes de 100 caixas, logo são 40 caixas) estão cheias, e que as restantes estão vazias (60 caixas, ou 60% nesse caso).

O cálculo de porcentagem é bastante simples. Normalmente se usa a regra de três simples e direta.

Se tivéssemos 200 caixas, e 50 delas estivessem com areia, qual seria a porcentagem de caixas vazias?

Fazendo a subtração, descobrimos que 150 estão vazias. Aplicando a regra de três para descobrir a porcentagem:

200 -> 100%
150 -> x

200x = 15000
2x = 150
x = 75
x = 75%

Ou seja, 75% das caixas estão vazias (que representam 150 caixas)

É importante lembrar que 1% é igual á 1/100 . É possível que em alguns vestibulares você encontre problemas do tipo:

(30%)2 = (30/100)2 = 0,32 = 0,09 = 9/100 = 9%

10050% = 10050/100 = 1000,5 = 10

Anúncios

Função Modular

Função é uma lei ou regra que associa cada elemento de um conjunto A a um único elemento de um conjunto B. O conjunto A é chamado de domínio da função e o conjunto B de contradomínio. A função modular é uma função que apresenta o módulo na sua lei de formação.

De maneira mais formal, podemos definir função modular como:
f(x) = |x| ou y = |x|

A função f(x) = |x| apresenta as seguintes características:

f(x) = x, se x≥ 0

ou

f(x) = – x, se x < 0

Essas características decorrem da definição de módulo.

Exemplo 1. Construa o gráfico da função f(x) = | –x|
Solução: primeiro vamos analisar o gráfico da função acima sem a utilização do módulo na sua lei de formação, ou seja, vamos fazer o gráfico de g(x) = – x 

O módulo presente na lei da função faz com que a parte do gráfico que se localiza abaixo do eixo x “reflita” no momento em que toca o eixo x. Mas por quê? Simples, a parte do gráfico abaixo do eixo x representa os valores negativos de y e, como o módulo de um número é sempre um valor positivo, o gráfico de f(x) = |– x| fica:

A parte do gráfico que está azul é parte que sofreu ação do módulo.

Exemplo 2. Construa o gráfico da função f(x) = |x2 – 3x|
Solução: pela definição de módulo, temos que:
f(x) = x2 – 3x, se x≥ 0
e
f(x) = – (x2 – 3x), se x<0 
Daí, segue que:
x2 – 3x = 0
x = 0 ou x = 3, logo :

Temos também que:
– (x2 – 3x) = 0
x = 0 ou x = 3

Daí, segue que:

Unindo as partes dos dois gráficos que se encontram acima do eixo x teremos o gráfico da função f(x) = |x2 – 3x|

Bissetrizes

O plano cartesiano é formado por dois eixos perpendiculares que se cruzam na origem das coordenadas (0,0), estabelecendo quatro quadrantes. A intersecção perpendicular dos eixos forma ângulos de 90º. 

No plano cartesiano, ao traçarmos uma reta, que passa pelo ponto (0,0) formando um ângulo de 45º com a abscissa (eixo horizontal), estamos dividindo um quadrante ao meio e determinando a sua bissetriz. 

Podemos traçar as bissetrizes dos quadrantes de duas formas: bissetriz dos quadrantes pares e bissetriz dos quadrantes ímpares. 

Bissetriz dos quadrantes ímpares 

A bissetriz dos quadrantes ímpares é determinada por uma reta que intercepta o ponto (0,0) traçando as bissetrizes dos quadrantes I e III. 

O coeficiente angular será igual a m = tg 45° = 1. Um dos seus pontos será (0,0) e todos os outros pontos pertencentes à reta b terão as ordenadas e abscissas iguais, por exemplo, (4,4), (5,5), (6,6), (7,7),… . 

Considerando qualquer um desses pontos e o coeficiente angular igual a 1, podemos concluir que a reta que representa a bissetriz dos quadrantes ímpares terá – de acordo com os conceitos de Geometria Analítica – a equação fundamental: y – y0 = m (x – x0). 
Substituindo o ponto (2,2), temos: 

y – 2 = 1 (x – 2) 
y – 2 = x – 2 
y = x 

Bissetriz dos quadrantes pares

A bissetriz dos quadrantes pares é determinada por uma reta que intercepta o ponto (0,0) traçando as bissetrizes dos quadrantes II e IV. 

O coeficiente angular será igual a m = tg 135° = -1. Um dos seus pontos será (0,0) e todos os outros pontos pertencentes à reta b terão os valores das ordenadas opostos aos valores das abscissas, por exemplo, (4,-4), (5,-5), (6,-6), (7,-7),… . 

Considerando qualquer um desses pontos e o coeficiente angular igual a -1, podemos concluir que a reta que representa a bissetriz dos quadrantes pares terá – de acordo com os conceitos de Geometria Analítica – a equação fundamental: y – y0 = m (x – x0). 
y – (–2) = –1 (x – 2) 
y + 2 = –x + 2 
y = – x 

A geometria plana, também chamada geometria elementar ou Euclidiana, teve início na Grécia antiga. Esse estudo analisava as diferentes formas de objetos, e baseia-se em três conceitos básicos: ponto, reta e plano. O conceito de ponto é um conceito primitivo, pois não existe uma definição aceita de ponto, temos nesse caso que aceitar sua existência e indicaremos um ponto por uma letra maiúscula do alfabeto(A, G, P,. . . ). Podemos definir uma reta como sendo um número infinito de pontos em sequência. Não é difícil perceber que sobre um ponto passa um número infinito de retas, porém sobre dois pontos distintos passa apenas uma reta distinta.

Uma reta que apenas passa por estes dois pontos é chamada de reta infinita, caso ela comece em um ponto qualquer e não tenha fim, ela será denominada reta semi-infinita, e no caso de ela se iniciar em um ponto e terminar em um outro ela será denominada de semi-reta. Indicaremos uma reta por uma letra minúscula qualquer (r,s,t,. . . ). Se tivermos três pontos distintos, teremos então um plano o qual contém os três pontos e todas as retas que passarem por dois destes pontos estarão contidas no plano, assim como também estarão contidas no plano todas as retas paralelas às retas citadas anteriormente. Indicaremos um plano por uma letra minúscula do alfabeto grego (a, b, g, …).

Para saber relacionar no espaço as retas entre si temos que saber quais suas posições relativas, o que pode ser feito usando-se a definição de ângulo: O ângulo geométrico é dado pela união de duas retas não colineares(que estão na mesma linha) partindo da mesma origem. O ângulo entre estas duas retas é medido em graus, de tal forma que caibam 180° em uma circunferência completa. Depois de conhecermos estes conceitos, poderemos introduzir as definições das formas geométricas mais utilizadas, uma delas é o triângulo, que consiste na reunião de três segmentos de reta cujas extremidades se encontram sobre pontos não colineares. Chamamos de lado oposto a um certo ângulo interno ao triângulo o segmento de reta que une os outros dois ângulos do triângulo e lados adjacentes a um ângulos os segmentos de reta que partem deste ângulo. Chamamos também de ângulo externo de um triângulo ao ângulo que é ao mesmo tempo adjacente e suplementar a algum de seus ângulos internos.

Os triângulos podem ser classificados em diversos tipos de acordo com seus lados(Equiláteros – Possuem três lados de mesmo comprimento, Isósceles – possuem dois lados de mesmo comprimento e Escalenos – possuem três lados de comprimentos diferentes) ou quanto a seus ângulos(Retângulos – possuem um ângulo de 90° graus, também chamado ângulo reto, Obtusângulos – possuem um ângulo obtuso, ou seja, um ângulo com mais de 90°, Acutângulos – possuem três ângulos agudos, ou seja, menores do que 90°). Polígonos são definidos como a figura formada po um número n maior ou igual a 3 de pontos ordenados de forma que três pontos consecutivos sejam não colineares.

Um exemplo de polígono de 3 lados é um triângulo. Os polígonos possuem denominações particulares para enes diferentes:n=3 – triângulo, n=4 – quadrilátero, n=10 – decágono, n=20 – icoságono). Estas denominações são derivadas dos nomes dos números em grego. Outra forma importante da geometria plana é a circunferência definida como sendo o conjunto de todos os pontos de um plano cuja distância a um ponto fixo desse plano é uma constante positiva. Chamamos de círculo ao conjunto de uma circunferência e seus pontos internos. Existem também certos casos especiais para quadriláteros como definiremos a seguir: é dado o nome de trapézio a um quadrilátero que possui dois lados paralelos.

Para o caso dos lados não paralelos serem congruentes dá-se a este trapézio o nome de trapézio isósceles, para o caso de lados não paralelos não congruentes é dado o nome de trapézio escaleno, e um trapézio que possui um lado perpendicular as bases é chamado trapézio retângulo. Paralelogramo é um quadrilátero que possui os lados opostos paralelos. Retângulo possui quatro ângulos congruentes entre si. O losango possui quatro lados congruentes entre si, e finalmente o quadrado que possui 4 lados e quatro ângulos congruentes entre si.

Leia mas aqui


REGRA DE TRÊS SIMPLES

Regra de três simples é um processo prático para resolver problemas que envolvam quatro valores dos quais conhecemos três deles. Devemos, portanto, determinar um valor a partir dos três já conhecidos.

Passos utilizados numa regra de três simples:

1º) Construir uma tabela, agrupando as grandezas da mesma espécie em colunas e mantendo na mesma linha as grandezas de espécies diferentes em correspondência.

2º) Identificar se as grandezas são diretamente ou inversamente proporcionais.

3º) Montar a proporção e resolver a equação.

Exemplos:

1) Com uma área de absorção de raios solares de 1,2m², uma lancha com motor movido a energia solar consegue produzir 400 watts por hora de energia. Aumentando-se essa área para 1,5m², qual será a energia produzida?

Solução: montando a tabela:

Área (m²) Energia (Wh)
1,2——–400
1,5——– x

Identificação do tipo de relação:

Área——–Energia
1,2———400↓
1,5———- X↓

Inicialmente colocamos uma seta para baixo na coluna que contém o x (2ª coluna).
Observe que: Aumentando a área de absorção, a energia solar aumenta.
Como as palavras correspondem (aumentando – aumenta), podemos afirmar que as grandezas são diretamente proporcionais. Assim sendo, colocamos uma outra seta no mesmo sentido (para baixo) na 1ª coluna. Montando a proporção e resolvendo a equação temos:

Área——–Energia
1,2———400↓
1,5———–x↓

1,2X = 400.1,5

x= 400.1,5 / 1,2

x= 500

Logo, a energia produzida será de 500 watts por hora.

2) Um trem, deslocando-se a uma velocidade média de 400Km/h, faz um determinado percurso em 3 horas. Em quanto tempo faria esse mesmo percurso, se a velocidade utilizada fosse de 480km/h?

Solução: montando a tabela:

1) Velocidade (Km/h) Tempo (h)
400—————–3
480—————- x

2) Identificação do tipo de relação:

velocidade———-tempo
400↓—————–3↑
480↓—————- x↑

Obs: como as setas estão invertidas temos que inverter os numeros mantendo a primeira coluna e invertendo a segunda coluna ou seja o que esta em cima vai para baixo e o que esta em baixo na segunda coluna vai para cima

velocidade———-tempo
400↓—————–X↓
480↓—————- 3↓

480X = 400 . 3

x = 400 . 3 / 480

X = 2,5

Inicialmente colocamos uma seta para baixo na coluna que contém o x (2ª coluna).
Observe que: Aumentando a velocidade, o tempo do percurso diminui.

Como as palavras são contrárias (aumentando – diminui), podemos afirmar que as grandezas são inversamente proporcionais. Assim sendo, colocamos uma outra seta no sentido contrário (para cima) na 1ª coluna. Montando a proporção e resolvendo a equação temos:

Logo, o tempo desse percurso seria de 2,5 horas ou 2 horas e 30 minutos.

3) Bianca comprou 3 camisetas e pagou R$120,00. Quanto ela pagaria se comprasse 5 camisetas do mesmo tipo e preço?

Solução: montando a tabela:

Camisetas—-preço (R$)
3————- 120
5—————x

3x=5.120

o três vai para o outro lado do igual dividindo

x = 5.120/3

x= 200

Observe que: Aumentando o número de camisetas, o preço aumenta.
Como as palavras correspondem (aumentando – aumenta), podemos afirmar que as grandezas são diretamente proporcionais. Montando a proporção e resolvendo a equação temos:

Logo, a Bianca pagaria R$200,00 pelas 5 camisetas.

4) Uma equipe de operários, trabalhando 8 horas por dia, realizou determinada obra em 20 dias. Se o número de horas de serviço for reduzido para 5 horas, em que prazo essa equipe fará o mesmo trabalho?

Solução: montando a tabela:

Horas por dia—–Prazo para término (dias)

8↑————————20↓
5↑————————x ↓

invertemos os termos

Horas por dia—–Prazo para término (dias)

8↑————————-x↑
5↑————————20↑

5x = 8. 20

passando-e o 5 para o outro lado do igual dividindo temos:

5x = 8. 2 / 5

x = 32

Observe que: Diminuindo o número de horas trabalhadas por dia, o prazo para término aumenta.
Como as palavras são contrárias (diminuindo – aumenta), podemos afirmar que as grandezas são inversamente proporcionais. Montando a proporção e resolvendo a equação temos:

EXERCICIOS

1) Uma roda dá 80 voltas em 20 minutos. Quantas voltas dará em 28 minutos? (R:112)

2) Com 8 eletricistas podemos fazer a instalação de uma casa em 3 dias. Quantos dias levarão 6 eletricistas para fazer o mesmo trabalho?(R: 4)

3) Com 6 pedreiros podemos construir um a parede em 8 dias. Quantos dias gastarão 3 pedreiros para fazer a mesma parede? (R:16)

4) Uma fabrica engarrafa 3000 refrigerantes em 6 horas. Quantas horas levará para engarrafar 4000 refrigerantes? (R: 8)

5) Quatro marceneiros fazem um armário em 18 dias. Em quantos dias 9 marceneiros fariam o mesmo armário? (R:8)

6) Trinta operários constroem uma casa em 120 dias. Em quantos dias 40 operários construiriam essa casa? (R: 90)

7) Uma torneira despeja em um tanque 50 litros de água em 20 minutos. Quantas horas levará para despejar 600 litros? (R: 4)

8) Na construção de uma escola foram gastos 15 caminhões de 4 m³ de areia. Quantos caminhões de 6 m³ seriam necessários para fazer o mesmo trabalho? (R: 10)

9) Com 14 litros de tinta podemos pintar uma parede de 35 m². Quantos litros são necessários para pintar uma parede de 15 m²? (R: 6)

10) Um ônibus, a uma velocidade média de 60 km/h, fez um percurso em 4 horas. Quanto levará, aumentando a velocidade média para 80 km/h? (R:3)

11) Para se obterem 28 kg de farinha, são necessários 40 kg de trigo. Quantos quilogramas do mesmo trigo são necessários para se obterem 7 kg de farinha? (R:10)

12) Cinco pedreiros fazem uma casa em 30 dias. Quantos dias levarão 15 pedreiros para fazer a mesma casa? (R:10)

13) Uma máquina produz 100 peças em 25 minutos. Quantoas peças produzirá em 1 hora? (R:240)

14) Um automóvel faz um percurso de 5 horas à velocidade média de 60 km/h. Se a velocidade fosse de 75 km /h quantas horas gastaria para fazer o mesmo percurso? (R:4)

15)Uma maquina fabrica 5000 alfinetes em 2 horas. Qauntos alfinetes ela fabricará em 7 horas? (R:17.500)

16) Quatro quilogramas de um produto químico custam R$ 24.000,00 quanto custarão 7,2 Kg desse mesmo produto? (R:43.200,00)

17) Oito operarios fazem um casa em 30 dias. quantos dias gastarão 12 operários para fazer a mesma casa? (R:20)

18) Uma torneira despeja 2700 litros de água em 1 hora e meia. Quantos litros despeja em 14 minutos? (R: 420)

19) Quinze homens fazem um trabalho em 10 dias, desejando-se fazer o mesmo trabalho em 6 dias, quantos homens serão necessários? (R:25)

20) Um ônibus, à velocidade de 90 Km/h, fez um percurso em 4 horas. Quanto tempo levaria se aumentasse a velocidade para 120 Km/h? (R: 3)

21) Num livro de 270 páginas, há 40 linhas em cada página. Se houvesse 30 linhas, qual seria o número de páginas desse livro?(R:360)

REGRA DE TRÊS COMPOSTA

regra de três composta é utilizada em problemas com mais de duas grandezas, direta ou inversamente proporcionais.

Exemplos:

1) Em 8 horas, 20 caminhões descarregam 160m3 de areia. Em 5 horas, quantos caminhões serão necessários para descarregar 125m3?

Solução: montando a tabela, colocando em cada coluna as grandezas de mesma espécie e, em cada linha, as grandezas de espécies diferentes que se correspondem:

Horas ——–caminhões———–volume
8↑—————-20↓———————-160↑
5↑——————x↓———————-125↑

A seguir, devemos comparar cada grandeza com aquela onde está o x.
Observe que:
Aumentando o número de horas de trabalho, podemos diminuir o número de caminhões. Portanto a relação é inversamente proporcional (seta para cima na 1ª coluna).
Aumentando o volume de areia, devemos aumentar o número de caminhões. Portanto a relação é diretamente proporcional (seta para baixo na 3ª coluna). Devemos igualar a razão que contém o termo x com o produto das outras razões de acordo com o sentido das setas.
Montando a proporção e resolvendo a equação temos:

Horas ——–caminhões———–volume
8↑—————-20↓———————-160↓
5↑——————x↓———————-125↓

Obs: Assim devemos inverter a primeira coluna ficando:

Horas ——–caminhões———–volume
5—————-20———————-160
8——————x———————-125

20/ x = 160/125 . 5/8 onde os temos da ultima fração foram invertidos

20/x = 800/1000

simplificando fica

20/x = 4/5
4x = 20 . 5
4x = 100
x = 100 / 4

x = 25

Logo, serão necessários 25 caminhões

2) Numa fábrica de brinquedos, 8 homens montam 20 carrinhos em 5 dias. Quantos carrinhos serão montados por 4 homens em 16 dias?
Solução: montando a tabela:

Homens—– carrinhos—— dias
8—————–20————–5
4——————-x————-16

Observe que:
Aumentando o número de homens, a produção de carrinhos aumenta. Portanto a relação é diretamente proporcional (não precisamos inverter a razão).
Aumentando o número de dias, a produção de carrinhos aumenta. Portanto a relação também é diretamente proporcional (não precisamos inverter a razão). Devemos igualar a razão que contém o termo x com o produto das outras razões.
Montando a proporção e resolvendo a equação temos:

20/x= 8/4 . 5/16

20 / x = 40 / 64

40x = 20 . 64

40 x = 1280

x = 1280 / 40

x = 32

Logo, serão montados 32 carrinhos

EXERCICIOS

1) Uma olaria produz 1470 tijolos em 7 dias, trabalhando 3 horas por dia. Quantos tijolos produzirão em 10 dias, trabalhando 8 horas por dia? (R=5600)

2) Oitenta pedreiros constroem 32m de muro em 16 dias. Quantos pedreiros serão necessários para construir 16 m de muro em 64 dias?(R=10)

3) Um ônibus percorre 2232 km em 6 dias, correndo 12 horas por dia. Quantos quilômetros percorrerão em 10 dias, correndo 14 horas por dia? (R=4340)

4) Numa fábrica, 12 operários trabalhando 8 horas por dia conseguem fazer 864 caixas de papelão. Quantas caixas serão feitas por 15 operários que trabalhem 10 horas por dia? (R=1350)

5) Vinte máquinas, trabalhando 16 horas por dia, levam 6 dias para fazer um trabalho. Quantas máquinas serão necessárias para executar o mesmo serviço, se trabalharem 20 horas por dia durante 12 dias?(R=8)

6) Numa indústria têxtil, 8 alfaiates fazem 360 camisas em 3 dias quantos alfaiates são necessários para que sejam feitas 1080 camisas em 12 dias ? (R=6)

7) Um ciclista percorre 150 km em 4 dias pedalando 3 horas por dia. Em quantos dias faria uma viagem de 400 km, pedalando 4 horas por dia? (R=8)

8) Uma máquina fabricou 3200 parafusos, trabalhando 12 horas por dia durante 8 dias. Quantas horas deverá trabalhar por dia para fabricar 5000 parafusos em 15 dias? (R=10)

9) Três torneiras enchem uma piscina em 10 horas. Quantas horas levarão 10 torneiras para encher 2 piscinas? (R: 6 horas.)

10) Uma equipe composta de 15 homens extrai, em 30 dias, 3,6 toneladas de carvão. Se for aumentada para 20 homens, em quantos dias conseguirão extrair 5,6 toneladas de carvão? (R: 35 dias).

11) Vinte operários, trabalhando 8 horas por dia, gastam 18 dias para construir um muro de 300m. Quanto tempo levará uma turma de 16 operários, trabalhando 9 horas por dia, para construir um muro de 225m? (R: 15 dias.)

12) Um caminhoneiro entrega uma carga em um mês, viajando 8 horas por dia, a uma velocidade média de 50 km/h. Quantas horas por dia ele deveria viajar para entregar essa carga em 20 dias, a uma velocidade média de 60 km/h? (R: 10 horas por dia.)

13) Com uma certa quantidade de fio, uma fábrica produz 5400m de tecido com 90cm de largura em 50 minutos. Quantos metros de tecido, com 1 metro e 20 centímetros de largura, seriam produzidos em 25 minutos? (R: 2025 metros.)

14) Para pintar 20 m de muro de 80 cm de altura foram gastas 5 latas de tinta. Quantas latas serão gastas para pintar 16 m de muro de 60 cm de altura? (R: 3 latas)

15) Três máquinas imprimem 9000 cartazes em 12 dias. Em quantos dias 8 máquinas imprimem 12000 cartazes, trabalhando o mesmo número de horas por dia (R: 6 dias ) 

16) Na fabricação de 20 camisetas, 8 máquinas gatam 4 horas. Para produzir 15 camisas, 4 máquinas quantas horas gastam? (R: 6 horas)

17) Nove operários produzem 5 peças em 8 dias. Quantas peças serão produzidas por 12 operários em 6 dias ? (R: 5 peças)

18) Em 7 dias, 40 cachorros consomem 100 Kg de ração, Em quantos dias 15 cachorros consumirão 75 kg de ração ? (R: 14 dias)